
Note that the logarithmic and power-law profiles of the velocity do not satisfy the 
physical condition d~/dr = 0 at r = 0 [i, 3]. This deficiency is eliminated here. 

Thus, the function in Eq. (3) leads to a result in agreement with the well-known laws 
of turbulent friction. 

NOTATION 

R, l, radius and length of the channel; r, z, cylindrical coordinates, referred to R 
and l, respectively; v, gas velocity; vo, gas velocity at the channel axis; U = v/vo; Cf, 
friction coefficient. 
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TWO-DIMENSIONAL FLOW OF VISCOUS FLUID BETWEEN CYLINDRICAL 

ROLLERS ROTATING IN OPPOSITE DIRECTIONS 

M. O. Izotov, G. M. Goncharov, 
and N. G. Bekin 

UDC 532.516 

A method of calculating the hydrodynamic parameters of two-dimensional flow of a 
viscous fluid through a channel formed by rotating cylinders is described. 

An important role in the reprocessing of polymer materials in rolling machines (cylin- 
ders, calenders) is played by the flow of the viscous fluid through the gap between oppositely 
rotating cylindrical rollers. The polymer between rollers is usually in the molten state, 
characterized by complex hydrodynamic effects which influence the quality of the end product. 
These effects include a "rotating stock" of material within the deformation zone, which ap- 
pears when the equipment is heavily loaded. In order to quantitatively estimate the flow 
characteristics under given technological conditions in a given equipment, it is necessary 
to mathematically describe the process and to construct an algorithm for calculating the dis- 
tribution of the velocity components at which particles of the material move through the de- 
formation zone as well as the integral characteristics related to this distribution. 

The flow region of the material is shown schematically in Fig. i. 

In order to describe the process theoretically, it is necessary to solve the complete 
system of two-dimensional Navier--Stokes equations with uniqueness conditions stipulated for 
the given curvilinear channel. 

It is well known that polymer materials are mostly nonlinearly viscous media and, there- 
fore, the Newton hypothesis of friction is inadequate for their description, which limits 
the practical use of the method which will be described here. We will nevertheless assume 
first that the material to be reprocessed is Newtonian fluid, the purpose being to simplify 
the development of this method of calculating a two-dimensional flow through a curvilinear 
channel and facilitating the test calculations. It will be assumed, furthermore, that the 
flow is steady and isothermal, also that the rate of material processing is held constant 
by the feeder band (Fig. la) moving around a roller until it enters the gap between rollers 
as a solid body at the same angular velocity. The flow region is bounded by the rollers on 
its left-hand and right-hand sides and by the exit coordinate from below, this coordinate 
being easily calculated from the given entrance coordinate by well-known methods such as 
those, for instance, which use the condition of constant material flow rate [i]. 
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Fig. i. Schematic diagram of flow region of material between 
rollers: (a) in Cartesian system of coordinates; (b) in bi- 
polar system of coordinates. 

Inasmuch as we are interested in a process with large stock of material in the deforma- 
tion zone, i.e., a process with a counterflow zone and closed streamlines (corresponding to 
~I~3) we can use the results of earlier studies [2, 3] and assume that to various values of 
the entrance coordinate ~H corresponds a single maximally possible exit coordinate ~,,max- 
For any arbitrarily stipulated entrance coordinate, accordingly, the corresponding exit co- 
ordinate will be always know?.. 

We will now analyze the process in a bipolar system of coordinates defined by the re- 

( ~ = l n  q , 13 0 1 - - 0 2 ,  ( i )  
rz 

a s i n l ~  a sho~ ( 2 )  
x - -  , y =  

ch  = - -  cos [~ ch  a - -  cos  [5 

lations 

Here the coordinate of material entrance into the deformation zone corresponds to some co- 
ordinate line, namely a circle 8 = const on which P = 0 by the definition of entrance. The 
boundary of the flow region will be assumed to consist of two parts, material being fed only 
across the part 8 = Bin which corresponds to the thickness of the feeder band from point E 
to point Bx. The other part of the boundary, from point E (with coordinates ~,, Bin) to 
point B(--~o, Bin) is a free surface, free of normal and shearing stresses, but its shape is 
not a priori known. We will, therefore, seek the shape of this free surface in the course 
of solving the problem. First, however, its shape can be stipulated in the form of some 
curve on the basis of experimental data or a priori information about the process. The lower 
boundary of the flow region coincides with the 8 = Bout part of the coordinate line between 
the moving walls ~ = so and ~ = --ao. In the bipolar system of coordinates the closed two- 
dimensional region of flow will have rectilinear boundaries, except along the free surface 
(Fig. ib). Boundaries rz and Fs correspond to the moving walls, F~ corresponds to the exit 
coordinate, r~ corresponds to the feeder band, and Fn corresponds to the free surface. Two- 
dimensional isothermal steady flow within this closed region, with small values of the Rey- 
nolds number (Re~lO-S), is described by the system of equations of motion and continuity. 
In the Cartesian system of coordinates this system of equations is 

a-ff = ~ \ ax 2 + Og2 ] ' 

Oy = p~ \ ox ~ + Oy z / ' 

Ou Ov (5) 
0x @ 

Upon introduction of the flow functions ~(x, y), letting 

Eqs. (3)-(5) transform into 

u =  a r  v =  o~ 
Oy Ox 

(6) 

oP o 
, ~ =  - -  ( ~ A i b ) ,  ( 7 )  
Ox Oy 

OP 0 
av ax (~zx~). (8) 
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Elimination of the pressure yields the biharmonic equation 

AAr y) = o (9) 

for the flow function. The flow function $(x, y) found from this equation has the property 
that its isolevel lines ~(x, y) = const are also streamlines, which makes it easy to recon- 
struct the flow pattern from the calculated distribution of this function. In the bipolar 
system of coordinates Eq. (9) becomes 

~(~, l - -A[h~(~--~A*(a '~)]  = 0 " 6 )  6) (10) 

In order to ensure uniqueness of the solution to the biharmonic equation, it is neces- 
sary and sufficient to impose two constraints on function ~ and its derivatives at the bound- 
ary of the closed region. The boundary conditions for each of its five parts have their 
singularities. At the boundary Ft, where a ='-ao, 

r 6)=0 (~m..<6...<~ut). (n) 

This condition signifies that F, is a streamline, which corresponds to the condition of ma- 
terial adhesion to the roller surface. The second condition is motion of a wall at velocity 
V 

0r 
"0= (--so, 6)=--Vh(--~o, 6) (6in<-..6<~--.~u t )- (12) 

At the boundary Ya one can assume that the u-component of velocity is zero and the v-compo- 
nent of velocity is uniform 

r (=, 6 out) = 

It follows from u = 0 that 

a6 

w 0 5  a 

(13) 

((~, 6out) = 0 (-- % ~< = ~< (~o). (14) 

Boundary rs corresponds to the upper wall. The condition for adhesion here must be ~(~o, 8) ffi 
const, where the value of this constant must match the velocity profile at the entrance 
boundary F, so that function ~ will not be discontinuous at the corner point 

(=o, ~) = �9 (=o). (is) 

The condition for motion of the wall at a linear velocity V is 

(Oto, 6)-----Vh(~ 6) (6in~6~6out)" ( 1 6 )  

At the boundary F4, we proceed as we did at the boundary F2, namely 

~;(a, 6in)= !" Vh(a, ~;in ~ do~= ~t(a) . (a1.~<a-~<c%]. ( 1 7 )  
- a ,  

The condition for motion of point E(e$, Bin) at a linear velocity V, is 

a~ ((z, 6in)=-- 0 (Ctt~<Cr (18) 
a= 

Most intricate is formulation of the boundary conditions at the free surface Fs. The 
conventional condition for a free surface of a viscous fluid, used by many authors [4-6], 
is a zero stress tensor applied to the vector of normals T-n = O. The physical meaning of 
this condition is a normal stress equal to the external pressure and absence of shearing 
stress. The differential form of the stress conditions at the free surface is 

au, 
- -  2~ ~ Jc P = O, (19) 

ou~ + au, = o. (20) 
as On 

Since the true shape of the free surface is not known, one must stipulate for it some 
likely approximation. For finding the true shape of the free surface one needs one more 
condition. At this third condition for the free surface we use 
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r 13)=0, (21) 

where ~=~(~) describes the free surface. This condition implies that the free surface is a 
streamline. Its physical meaning can be interpreted as follows. We stipulate some shape of 
boundary r5 and imagine a stationary solid wall placed on it. We then solve theproblem for 
one of the conditions, say condition (20), and determine the flow pattern. We then check con- 
d~tion (19). When the latter is satisfied, then the stipulated shape of boundary r5 indeed 
approximates the free surface (the wall can now be removed and the shape of the boundary will 
not change). When condition (19) is not satisfied, then we change the shape of boundary F5 
and thus also of the stationary wall and again solve the problem, but this time for condi- 
tions (20) and (21). We proceed in this manner until we obtain the true shape of the free 
surface. For solution of this problem, we express conditions (19) and (20) in terms of 
function 4. Condition (20) for the shearing stresses becomes 

as h as ~ n  h On, 

According to condition (21), ~(~, ~) : 0 at the boundary rs and thus ~ : const on the line 
8 = q (a) so that 3~/~s = 0, from which follows 

and consequently 

O. 1 O~ = 0 

Os h Os 

a ( 1  ar = o. 
an h On 

Condition (19) for the normal stresses in dimensionless form becomes 

1 ar 
Since un ..---n --,hence 

h as 

(23) 

2 1 Ou n (24) 
P= 

Re h On 

2 , 0 (i 
P--'-- Re h On h as " (25) 

On the other hand, the Navier--Stokes equations yield 

o, o ( ,  ) (27) 
o13 - / ; - a ,  . 

From these expressions one can easily obtain, in dimensionless form, the relation 

OP 1 a [ 1 A ~ ' ~  (28) 
Os Re an 

to be satisfied at the free surface. Differentiating expression (25) with respect to s 
yields 

Os Re Os h On h Os 

(28) and (29) we obtain a relation for checking the shape of the free surface, From Eqs. 
namely 0(1 ) 011 0(i0 )] 

a n  - . ~  Ar = Tss h an h as " 

We now introduce the velocity vortex 

or, in bipolar coordinates, 

au av (31) 

ay Ox 

l lO(uh) a / (32) 

1399 



Considering that 

we find that 

l ar 1 a~p 
O= --, U=-- - - ,  

h a= h a~ 

1 

~= h2 Ar 

The biharmonic equation is then equivalent to the system Laplace and Poisson equations 

A~ = O, 

The expression for the pressure gradient can now be rewritten in terms of 

(33) 

(34) 
(35) 

aP at 
_ _  : i~ ( 3 6 )  
a ~  a[~ ' 

aP at (37) - - , ~ = ~  [ula - -  

013 a~ 
For solving this problem numerically, the flow region is subdivided by a grid of 8 = 

const and a = const coordinate lines. In the bipolar system of coordinates this grid trans- 
forms into a nonuniform rectangular one. The shape of the free surface is initially stipu- 
lated in Cartesian coordinates and then transcribed into the corresponding 8 = ~(a) curve 
along the boundary r5 in bipolar coordinates. In order to ensure uniqueness of the solution 
to the system of Eqs. (34), (35), it is necessary to stipulate two conditions at the bound- 
ary: a constraint on function ~ and a constraint on function 9. The physical meaning of 
the process provides a simple guideline for imposing the constraint on function 9. The con- 
straint on function ~ is stipulated approximately, on the basis of the relation between 
and 9. The boundary condition at the wall is 

(i, jc) = O. (38) 

with a-layers and 8-1ayers of the grid denoted by indices i and j respectively, and JC de- 
noting the number of the coordinate line which corresponds to the boundary r,. 

Expanding function ~ in the vicinity of a point (ic, j) into a Taylor series and re- 
taining the terms of up to second order, considering also that u = 0 at the boundary r,, we 
obtain 

~i,t ~-- 2~pi ,i- '  _}_ 2V , (39) 

where kj is the a-step on the grid and h(i, JC) = h(aj C, 8i). 

At the boundary Fa the first condition is the same as condition (13): 

~i~i = @o,i, (40) 

where io is the number of the coordinate line which corresponds to the exit coordinate Bout 
(boundary Fa). The constraint on the vortex at the boundary ra can be obtained by expanding 
function ~ in the vicinity of point (0, j) into a Taylor series and considering that u = 0 

and thus T (io, j) = 0, we obtain 

to , f= 2 (~,.:-- ~o.i) 2 [ ~o,i+, ~o,i ~ ~Po.:-, ] (41) 
h2 (0, /) h~ + h~ (0, i~ kj (/~s+~ + kj) kjkj_~ kj_~ (kj + kj-O " 

At the entrance boundary rd, by analogy, one obtains the constraints 

~.~,!.~__ cbx,i, (42) 

2 (*x-i , i--  ~PN,/) 2 I '[Z,v,i~1 *U.f + qL':,i--I .] (43) 
$'v'/= hZ(N, j) h~, + h~(/V, j) " ,_kj(k:~+kj)  kjkj_, kj_~(~j+ks_~) ~ " 

At the boundary rs the constraint on the flow function is the same as constraint (15): 

~,i e = ~x,o. (44) 

Using the condition of impermeability, namely u = O, and consequently ~u/~8(i, O) = O, we 
obtain 
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At the free surface ~ we have 

Fig. 2. Pattern of material flow through 
gap between rollers: region I an "en- 
trance" vortex. 

2 
h~(i, O) h~ [~[~,, "- V(qbx,o -~-.h(i, O) k~)]. (45) 

r  ---- O. (46) 

The second constraint on function ~ is already given, namely condition (23), but it must be 
reformulated in terms of function 

0 ( 1  O~b ) =H(~, ~) aq; l [ O Z ,  n~_4_ 2 0%[: ~ n~,) =0, (47) 
an , i, an ~ + -#- \a=2 a~a6 n~n~ + 

0 i 1 ),and n8 are the corresponding vectors of normals to the free where H (=, 6) = -~n h (=, 6) n=, 

surface. 

Considering that h2~ 0~ -- 0~ , we obtain from relation (33) 
a=2 0132 

h2ng~= T 0-~ (ng--n2)--2 o  ̀ 0=06 n~n~ - -  \ O= " 

On the other hand, relation (33) yields alsohZ~-- ~r = 0z~, so that 
a~2 o= 2 

Adding the symmetric conditions (48) and (49) yields 

~----- h2(n2q_n~) [~O~z Oa z , a - -  ~'-- a~z3f3 n=n~ - - . h 2 ( n ~ + n ~  ) ~ no,+ ~ nf~ . 

Finally, as the verifying condition we select the condition for the normal stresses formu- 
lated in terms of ~: 

On as h On h Os 

The systems of Eqs. (34), (35) with boundary conditions (38)-(46) and Eqs. (50), (51) are 
solved by the method of successive relaxatlons [7]. The recurrence relations for the system 
of Eqs. (34), (35) at each internal node of the gri d are 

{ ( i] (k) [~bi_l.i/h+l' (52) [~, A(k+,) = hi_lh~kj_xkj [~;i+,," + 
"'" hi-xht + k j_lkj hi (h~-i + hi) hi-x (h~-i + h,) 

-}- ki[*~' f+l](k)(kj-i -~-'k]) -~- kj-a[r 4-l](k+l)(k]_l + kj)-- 2! h~.]~.])/-- [,~ j](~) } m. -4-[*~4] (~), 

hi_lhi + ki-llej hi (hi-1-4- hi) -4- , '" " + = ~,]-1 (k]-I  -]- k]) 

+ , I;,.,-,l ) } (53) k~(k~_~+k~) = k~_~(k~_~+k~) --I;~'il(~) ~ +  [;"i/~)" 
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In these relations m is the so-called relaxation parameters (l~e~2), a successful selection 
of its value can appreciably accelerate the convergence of the iteration process. 

The method was implemented on a computer, and the qualitative flow pattern shown in Fig. 
2 generalizes the results of several calculations for two-dimensional flow of a Newtonian 
fluid through the gap between oppositely rotating rollers. The pattern of streamlines on 
this diagram agrees closely with results of experimental studies [8-10] pertaining to flow 
of polymers through the gap between rotating rollers. A rotating stock near the free surface 
and an "entrance" vortex [9] are revealed by a 30 x 40 computation grid already. The dis- 
tribution of velocity components u and v can be easily reconstructed from the distribution 
of streamlines. Determining the pressure distribution within the deformation zone requires 
another cycle of iteration for a solution of the Poisson equation for pressure. 

Numerical studies of two-dimensional flow of a rheological power-law medium between ro- 
tating rollers are currently underway and based on this method. 

NOTATION 

u and v, projections of the velocity vector on the axis of coordinates; ~, dynamic vis- 
cosity; P, pressure; h(a, ~), a component of the metric tensor for the bipolar system of co- 
ordinates h(a, B) = a/cha -- cosB; a, a parameter in the bipolar system of coordinates; Bin 
and Bout, bipolar coordinates of entrance and exit respectively; so, bipolar coordinate of 
the roller surface; gH, = YH 2R~~ entrance coordinate in Haskell variables; ~1,max, maxi- 
mally possible exit coordinate in Haskell variables; ho, half of the minimum gap width; n 
and s, respectively, normal and tangential directions to an arbitrary surface; Re, Reynolds 
number; and ki, kj, steps along corresponding coordinates in a nonuniform rectangular compu- 
tation grid. 
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